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Abstract—The non-uniform extension of a slab of a non-linear viscoelastic solid is studied. Two
boundary value problems are solved, one with deformation prescribed at the upper boundary and
the other with the traction prescribed. The formulation uses the deformation in the direction of the
slab thickness as the dependent variable, which is found by solving a non-lincar integro-differential
equation. The numerical calculation is such that at each time step, the problem is equivalent to a
fourth order non-linear ordinary differential equation for the current coordinate in the direction of
the slab thickness. This equation is then integrated by the same numerical procedure as in the
corresponding clastic problem.

1. INTRODUCTION

Few initial-boundary value problems have been solved within the context of genuinely non-
lincar viscoelastic solids. Wineman (1972, 1978) studicd the response of non-lincar axially
symmetric viscoclastic membranes and found the possibility of multiplicity of solutions.
However, this study which prognosticated interesting possibilitics with regard to the bifur-
cation and stability of problems involving finite deformations of highly non-lincar visco-
elastic solids has never been followed up with the kind of scrutiny the arca deserved. In this
work, we provide a rather interesting analysis involving the non-homogeneous cxtension
of a non-lincar viscoclastic slab.

The problem under consideration can be considered as having arisen from another
train of thought. In recent years there has been a considerable amount of interest in the
study of non-homogencous deformations in non-linearly elastic solids [cf. Curric and Hayes
(1982), Rajagopal and Wineman (1985), Rajagopal er al. (1986)]. In view of Ericksen’s
results (1954, 1955) that in an isotropic compressible elastic material *“universal solutions™
arc homogeneous, not much work has been expended in studying non-homogeneous defor-
mations as they are not possible in all isotropic compressible materials. However, since
non-homogencous deformations are the order of the day, recently, attention has turned to
seeking an answer to the following question : given a non-homogeneous deformation, can
we determine the largest (or at least a large enough) class of constitutive equations that can
support such a non-homogencous deformation?

Rajagopal and Wineman (1985) showed that for a non-linear elastic slab a class of
non-uniform uniaxial extensions (or compressions) were possible within the context of the
Mooncy-Rivlin theory. They find that the classical uniaxial solution corresponds to the
special case which corresponds to a specific structure for the pressure field, namely it being
a constant. In this study we investigate whether such non-homogeneous solutions are
possible within the context of non-lincar viscoelasticity. In this case the problem turns out
to be even more interesting for there are two possible problems, one in which the dis-
placement of the slab is specified and held fixed, and the other in which the appropriate
traction is prescribed and held constant. While Rajagopal and Wineman (1985) were able
to obtain exact closed form solutions in the case of a Mooncy-Rivlin material, the equations
governing the viscoelastic problems are too complicated to be amenable to such an analysis
and have to be solved numerically.

We consider the elongation of a slab of thickness H, its boundaries defined by the
planes Z = 0 and Z = H. It is found that when the viscoelastic slab is subject to a step
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elongation. an inhomogeneous deformation is possible and the stresses in the slab vary
inhomogeneously and “relax™ with time. Inhomogeneous deformations are also possible
when tractions are prescribed on the boundaries. When tractions are prescribed on the
boundaries of the slab. the displacements of the material points initially change rapidly
with time. However, the displacements change less rupidly as time goes on. eventually
reaching an asymptotic value. We find that the inhomogeneous deformations obtained by
Rajagopal and Wineman (1985) within the context of Neo-Hookean and Mooney-Rivlin
theories of elasticity can be recovered as special cases of the solutions established here.

In Section 2. the constitutive equation for the non-linear viscoelastic material to be
employed is introduced and the non-uniform extension problems corresponding to the
relaxation and creep problems are formulated. The problems are reduced to solving non-
linear fourth order partial differential equations. The details of the numerical method are
given in Section 3 and the results are discussed in Section 4.

2. FORMULATION
We shall assume that the Cauchy stress ¢ has the form [cf. Pipkin and Rogers (1968)]

!

N
o = —pl+F() {R[C(z):OH J L. ; RIC(s). 1 —3] d,x‘} F'(n, H

g Clt—x

where the term —pl is due to the constraint of incompressibility, F is the deformation
gradicnt tensor and € = F'F, R[C, ¢} is the strain dependent tensorial relaxation function
induced by a single step strain history and has the form

R = ¢+, CH+.C (2)

where ¢y, . ¢ are scalar functions of £ and the invariants of C. Pipkin and Rogers (1968)
did not, however, present any specific forms tor the strain dependent relaxation functions
¢, i =0,1,2 appearing in (2). Wineman (1972) chose ¢, such that

R[C(5).¢] = R[N +ud ()T = pCls)f, (3)
where

sy =tr C{s), R(E) = C‘(,[(l —7y)exp (~ . ) +y]. w>00<y <, (4)

g
Tr

where R( ) is a relaxation function associated with small strains,and y = C,/C,, Cydenotes
the initial modulus and €, the residual modulus. Note that if time dependence is suppressed
from (1) with (3) and (4), it reduces to a Mooney-Rivlin material, in which g represents
the derivative of the strain energy density function with respect to the second strain invariant
divided by the derivative with respect to the first strain invariant. As will be seen, this
feature enables a discussion of non-homogeneous deformations in the present context, to
be related to the discussion of non-homogencous deformations for the elastic problem.
Equation (1) with (3) and (4) can be rewritten in the form

Coll =) | 1—s
o = —pl+ Co{[l + n/(N]B(1) — uB (1)} — »9%“« " j: cxp(w ‘>

R ) TR

x 1 + 1l($)]B() — pF(HCEF (1)} ds. (5)
Consider a viscoclastic slab which undergoes the following deformation
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e
VAZ.0

. o= MZ.), (6)

B V /‘(AZ )

X =



Non-uniform extension of a non-linear slab 913

where prime denotes the partial derivative with respect to Z. This deformation allows for
non-homogeneous deformation along the Z-axis and uniform contraction or expansion on
surfaces Z = constant. The deformation gradient F is given by

1

— 0 oz
F= 7
0o L g 0

NEG
0 0 X
where

x= =4V, ®)
= =AY ®

and thus F depends on X, Y and Z. The Left Cauchy-Green deformation tensor B = FFT
has the following matrix representation:

B=FF' = L. (10)
aft i +3 pr
oA By At
Thus,
e Ixf (1= L)]
gitl %] a\ 1= 3
. 1 . l
B- o= Iaf} }';“2' +If? B (1-— }7) . (i
!
al’ (I— :;) i1 (I-w i) A (1— g)
L A i Al
where
2 3 2 2
fstr857+a“+f}‘+(,%’)'. (12)
The Right Cauchy-Green deformation tensor C = F'F is given by
[ ]
Ly 2
A \/;:
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Also, the tensor F ! has the matrix representation :

Ji0 —
o
F'=1| 0 i - —f; : (14)
\/ P
|
o 0 -
i 2o

For notational convenience, let M = F()YC(s)F'(r). From (7) and (13). we observe that the
components of M are:

;s
- o + . —
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5
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where

2 2 3 2 M bl ~3iYn
1) = ) PEOFBOHEWP ) = — X)) )X,
(/ s)

Bs) = = ()] A Y. s = s (16)

We shall assume that inertial effects in the equations of motion can be neglected as
quantitics vary slowly with time. In view of the assumed form of the deformation, we find
that it is computationally more convenient to express the cquations of motion in terms of
the reference contiguration. Then, in the absence of body forces, the equations of motion
take the form

b} n
Lt -
ax, 1\’ X (”Y i

From {5) and (7)-(17), a lengthy but straightforward calculation yiclds the following
equations :

L= xpzo. (18)
cX

= Yf{(Z,1). (19)
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j;- —1" L+ Y20~ Co(1+ “)

Co(l—-) 2#] b A"(s)}
J ( >{D+ 7o 7 TPEer Ve

e ff 2w\ e U=D [ (_t )[ 2 ] } 2
+C06—Z{(l+ }-,)(A) = j;exp - l+,() (A)dsg, (20)
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The scalar p can be eliminated from (18) and (20) to obtain

NZ, A
RED 2 rza @

This same result can also be obtained from (19) and (20). Integration of (22) yields
Af = Ci (1), (23)

where C,(¢) is an arbitrary function of ¢, [t follows from (21) and (23) that
(/. )? ()) | " (l=7y) J ( t—s
(4)3 ’ ( )(ll) - » oexp —?

p[A7®F 3 2u 1A} 1 2u u A"(s) _
“{‘itxun’+2[“*TGJ(7J"5[‘ A&J 3 [ruw}ds’C“L @

where C(1) = C,(1)/C,.

Equation (24) is a Volterra-integro differential equation for A(Z, ) which is third order
in the spatial derivative. It also contains the arbitrary function C(¢). This implies that four
boundary conditions arc nceded. Suppose we consider the case of a viscoelastic slab which
is originally bounded by the planes Z = H and Z = 0. Appropriate conditions at the bottom
and top boundaries, respectively, would be

A0,0)=0, A(H, 1) =h(), (25)
and

X0, =g(t), A(H, 1) = [0 (26)
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Condition (25), states that the slab initially at Z = 0 cannot move in the Z-direction.
Condition (25). states that the slab initially at Z = H moves to z = h at time 1. From (6),
it can be seen that the boundary conditions (26),; and (26). are equivalent to prescribing the
uniform contraction or expansion of the plane surfaces at the bottom and top. respectively. It
is also possible to specify normal tractions ¢..(0, 0.0, 1). 0..(0.0. H, 1) as alternate boundary
conditions. They would then replace the appropriate conditions of (25) or (26).

Let us turn our attention to determining the unknown scalar p, and then the stresses.
From (18}-(20) and (23). we have

X Y. Z. )= UX + Y f(Z.0O+b(Z.1)

=X+ Yﬁ%@ +5(Z, 1), 27
where
WZ.t) = C, {(‘:}f-ku)f— Ha ~y)(2’)3[1 —exp(~ ri)]
_{=p j Cexp ( _ .’_:"> (’”_ d_s-} £Cy0). (28)
o 0 tx J A(8)

and C,(#) is an arbitrary function obtained duc to integration. Substituting (10), (11}, (19)
and (27) with (28) into (5), we have

3 2 2 ;'" .
3 (X, Y. Z.0)[Co = 6, (X Y. Z,0(Cy = C(n) =16+ 1 -—~}’)[(A’>' =T ]
| t + 1 | | » ,4 ¥
Urmesel o o\ ) Tay

Uln(n sy (=7 f ‘. ( _ {.:_':“)
+2)~,[2().’)‘ ”Cl(l)](f\/ +Y)+ T OLXP T

A N GO £ "-"(S),.,.f:'ﬁ] ST () e :} .
x{z"(;’j‘;?(.si);.'“ v +2).'(.s-)(;.')2[;:(s) o R TR G

(29)

s.(X.Y.Z,0/C,y

i

1. . 1.1 Ax
=5 (A =Gyl =) E-expl — =1 :7;;;
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Ty \/;_' o A(s) 2(8)4 T

and

) t
6..(X, Y, Z,D/Cq = Cy(t)—~ «C:;,'—)(,L)(Xz-'r YO+ (A + i -4 -—y)().’)*[l —-exp(—— ;;)]

_U=u 'S);f)ﬁexp<_i;fﬁ) ds. (31)

Tr 0 }.’(S) R

Equation (24) admits the solution corresponding to a homogencous uniaxial extepsi_on
history, A(Z. 1) = Ay(t). in which case C(s) = 0. Conversely, if C(f) = 0. the uniaxial
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extension history need not be homogeneous. In order to show this, let ¢t = 0 in eqn (24).
This reduces to the same equation as for the elastic problem for a Mooney-Rivlin material
[cf. Rajagopal et al. (1986)]. When u = 0, these equations reduce further to the case of a
Neo-Hookean material [cf. Rajagopal and Wineman (1985)]. The results in this paper imply
that, if C(0) = 0, then

1

= GzZra) 2)

A (D)

where «, and «, are constants. Thus in the case of a Neo-Hookean material. when C = 0,
the stretch ratio A’ need not be uniform. The classical solution 4" = constant is a special
subclass which corresponds to «, = 0. Similarly, non-uniform solutions for the stretch ratio
are possible in a Mooney-Rivlin material, the classical uniform solution being a special
subclass of the same.

Suppose that there are no stresses in the viscoelastic slab, if there is null deformation
history. Mathematically, this implies that ,; = 0.if A" = A'(s) = 1 and A" = 4"(s) = 0. When
A" = A"(s) = 0, by virtue of (24), C(t) = 0. Then it follows from (29) or (31) that

Cy(H) = —(§+u){l—(l—y)[l—exp(-})]}. (33)
R

3. NUMERICAL METHOD

The method developed by Lee and Rogers (1963) to solve boundary problems of lincar
viscoclasticity was successfully extended to the solution of non-linear viscoelastic problems
by Wineman (1972). Here, this method is further improved [¢f. Ferziger (1981)]. For
convenience in developing this method, we express (24) in the form

0x ‘ “OM(s
%’Z {F. A+ L Gi[A(5):t—s] ds} + J; {7;) Gy[A 5 4°(s) s 1 ~s]) ds

+ Fy(A, ")+ f Gy A7 A(s);4"(s); t—s] ds = 0, (34)

0

where

| — A -
Gzzu exp(_’_.f>,

2ty [F@)? TR
Y 30 W KU gpaes
Fy = —#(17) -3 T-f-C(l)/.,
S L1 P R [ A
- {2 For 4[”;@] O S A

Let the interval [0, 7] be partitioned into n subintervals [t, = 0.1,,...,, = ¢]. The third
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integral in (34) can be written as

!

]

JG;[i.':i.";).'(s):)."(s);t—-s] ds=J GAA () 2" () A (s); 47 (s) o, —s]ds. (36)

[} y

Expressing (36) as a summation of n—1 integrals over the subintervals (r.1,. ).
{k = l.n—1). approximating each of these by the trapezoidal rule and denoting the finite
sum approximation to the third integral of (34) by S.. we have

S; = J GyA A7 A (8);47(8) st —~s] ds
i

14

%{G,‘[i’(tnl ).”(f,,). /‘:',(In)' ';'"(_(n)~ 0](111 - ’n l)
+GH[A (), A7 () A () A7 () =1 — 1)
n -
+ Z Ga[A () A7) A () A1) = B ey — 1)}~ 37
k=1
Similarly. the first two integrals of (34) can also be written in the same form as (36). For
notational convenience, we denote the finite sum approximation to the first integral of (34)

by S,. Letting S denote only the terms in the approximation to the sccond integral which
contain A'(4,), k < n, we have

5 = f G A (s);1—s]ds
0
= %{GI{;’-’U"LO]U"—&~-x)+Gl[i'U;)s L=t — 1)
n -
+ Z NP (AN AT |)}~ (38)
k=2
and
CORS) O s
j; 7 G.[A (s t—s]ds = 27 G.[A(), A(1,), 01+ S, {39}
where
Gl (6). 2°(6,).0) = G {4 (1,): A(6) 1 0] (= £, 1), (40)
., ., 2A"(ty)
S, = %{G:[’- (£ A7t In""l](llull)'—'b'z"'!”

L | -
+ 3 Gl (1) AUt b = ]l s 1 — £ 1) 2 “’"}. (an

k=2 cZ

In the finite sum approximation to the second integral of (34). it can be seen from (41) that
the term depending on A°(1,) has 8A"(Z. t.)/0Z as a coefficient. For 1, < 1,. this derivative is
approximated by a simple difference expression.
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The method of solution will be to determine ¢4i"(Z.t)/¢Z at each time ¢, in terms of
A(Z. t) and A”(Z. 1) and the solutions determined at previous time steps # < t,. We first
consider the method of solution for the initial response at ¢, = 7, = 0. Equation (34) can
be reduced to the following system of first order ordinary differential equations. From (34),
the initial elastic response, 1, = 1, = 0, satisfies the following system of equations:

CA(t)
ez

6':-|(1|)= - 8':-:(11)_ _FZ[;-I(II)~;-2(II)]

) B = 42
cZ #2(t1) cZ Fila (el (42)

A1),

This system can be integrated by fourth order Runge-Kutta method [cf. William (1986)]
subject to conditions (25) and (26). Starting values for the numerical integration, given
by (25), and (26),, are A(0.¢,) =0 and 4,(0. t,) = #’(0, ¢,) = g(r,). The starting value
43(0,t,) = A7(0,¢,) and C(t,) can then be determined so as to satisfy the end conditions
required by (25), and (26).. namely A(H. t,) = k(t;) and A, (H. t)) = A'(H, t,) = f(t)). This
requires a two-dimensional shooting method. In applying this method. a value is assumed
for C(1;) and then 4,(0, 7,} is adjusted so as to satisfy (25),. The process is repeated with
new values of C(¢,) until (26), is satisfied. However, for the purpose of this work, a value
of C(t,) is assumed, and the value of f(¢,) is found by use of (26)..

Note that normal tractions ¢..(0.0,0,17,) and/or 0..(0.0. H.t,) could be specified
in place of (26). By (31), these conditions could be solved for the values of 4,(0,1,)
and/or A,(H.t)). The traction conditions can thus be considered equivalent to (26). If
IA(H. t))=h(t))] = ¢ > &, for some prescribed . A7(0.1)) is adjusted and the process is
repeated. 27(0, ¢,) is chosen and automatically adjusted as follows. Let an initial guess of
A7(0.t;) be denoted by A Then A7(0.¢)) is assigned the following three values —b,
2hx0.618—h and b, in turn. SupposcTthat 26 x 0.618 — b and b are the two values which
result in the two smallest values or the error 8. Values 0 and A are picked up as the end
points of the new range of 27(0,¢,) in the second iteration. Then, 0, hx0.618 and b arc
assigned to 47(0,¢,) as its new values in turn. Now if A x0.618 and b arc the most recent
values which result in the new smallest values of 8, /2 and b are chosen as the end points
of the range of A”(0, ¢,) for the third iteration. This time, the values /2, /2 (1.0+0.618)
and b are assigned to 2”0, 1)), in turn. This procedure is continued until a value of 47(0,¢,)
is found which results in |A(H, 1) =h(1,)] = & < ¢ [t should be pointed out that b should
be chosen large enough so that [— A, b] will cover a large enough range of values for 27(0, 1,).

Forn > 2, eqn (34) is written in terms of the notations defined in (37)-(41) as

4"(t, , 04" (1) A4 . ., . . \
w(:’z‘) {Fl [;' ('n)] + Sl } + ‘:f(";i) Gl[""(,n)v ’ (’n)‘ 0] + ‘53 + FZ[/"(’")‘ /'"(I")] + S-‘ = 0 (43)

Furthermore, eqn (43) is rewritten in the form:

A1) _; 04(1,) = () 4 (t,) _ R A )]+ S+ S,
ez "oz FiA D)+ S0+ Gl (1), 4,(1,).0)

(44)

In the third of equations (44), F,. F>and G, depend only on 2'(¢,) and A”(s,), while S,
S:and Sy depend on A°(¢,), A7(2,). 2'(4). A”(1,) and 027(1,)/0Z, k < n. Because the last three
have been found by solving (44) for times 1, < 1,, S|, S, and S; may now be considered
functions of the independent variable Z, 4°(4,) and i"(¢,). Thus. for each time t,, i(z,),
A(ta), A7(¢,) and 04"(¢,)/€Z are found by solving a coupled system of non-linear ordinary
differential equations (44). These results are then stored for use at 1,, ;. The solution of
(44), subject to appropriate boundary conditions at 2 = 0 and /4 = A, is obtained by the
same procedure as was outlined for the initial elastic response.

Once the functions A(Z, ) and A’(Z, 1) have been determined. the current coordinates
x(Z.1) and y(Z.1) are obtained directly from (6), while stresses are calculated from (29)-
(31), in which the integrals are approximated by the same procedure as was used in (37).
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4. DISCUSSION

All calculations are carried out for a slab in terms of the following non-dimensional
quantities :

A TS S 4

_.H. =g f.w}_‘l',. A=A (43)
and

G.=22 g =le g T (46)

The parameter g is chosen to be 0.1, the ratio of long time to initial moduli v = C/Cy s
picked to be 0.25, and the relaxation time is assumed to be 1.0. The initial condition (26},
A0. 0 (=4,{0.1)) is set as 1.1, which is equivalent to saying x(0, 1) = X,’\ﬁ.l =0.95%
and 3#(0.1) = Y/\/ﬁ =0.95Y. For the problem where traction is prescribed, calcula-
tions are carried out for ¢..(0.0.1,¢) = 0.2, and for the problem where displacement is
prescribed, A(1) = 1.2. At each time step. the value of £7(0,1,) [=-—i:1(0. t,)] is accepted as
the final value when |4(1, 1) — 1.2| < & for the problem where displacement is prescribed or
16..00.0, 1, 1)~ 0.2] < ¢ for the problem wherge traction is preseribed, where e = 5.0x 10
In general, for this choice of &, about 10 iterations are required at cach time step to arrive
at an acceptable value for £7(0, 1). Time steps £, arc chosen to vary logarithmically as did
Wineman (1972). This permits small time increments for carly times when quantities are
undergoing large varations and larger time tncrements for later times when the vanations
are smaller. The time steps used are given by the refation £, = £ x 107, where 4 = 0.2 for
¢=2.3..... 10, 4 =0.05fork > 11, withr, = 0.01.

The responsce of the slab at + = 1, = 0 1o a step clongation, A(1.1) = 1.2, for different
A'(1, 1)) [or different C(¢))] is shown in Figs 1 and 2. For example, given £(1,0) = 1.2, while
C(0) is assumed to be 0.0, 0.1 and 0.3, the values of A°(1,0) ure 1315, 1.27 and 1.20,
respectively. It should be pointed out that there is no clear physical meaning for C{1),
though it is related to the boundary condition A’(1. 7). However, it is more convenient to

1.35

1.30

1.25 4

1.20 4

1.15 1

Stretch Ratio \’(2.0)

1.05 4

1.00
0.0 0.2 0.4 0.6 0.8 1.0

Nondimansional Coordinate Z

Fig. 1. Variation of the stretch ratio »” at initial time.
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0.42

0.36 -

A
Z,0)

i 0.30 -

0.24 -

4
=
)

o
-
N

Nondimensional Stress &n(o‘o

0.06 |

0.00 —_
0.0 0.2 0.4 0.6 AO.B 1.0
Nondimsnsional Coordinate Z

Fig. 2. Distribution of the stress o, at initial time.

deal with C(f) instead of 4°(1, f) for computational convenicnce. Figure 2 shows how the
stress in the slab 6..(0,0, Z, 0) varies with C(0) [or 2°(1,0)] at ¢ = 0. It can be seen from the
figures that a symmetric deformation of the slab about the mid-planc is obtained by setting
C(0) = 0.57, which corresponds to A'(1,0) = L.1. It is intercsting to note that if we still
assume a constant valuc for C(1) for ¢ > 0, for instance C(¢) = 0.57, though there is a
symmetric distribution of the stretch ratio and stresses initially, as time progresses they
become asymmetric as shown in Figs 3 and 4. This implics that assigning a constant C(¢)

0.35
t=0
0.30 1
“S 0.25
=B
N
<
w 0.20 4
g
73
2 te1
§ 0.15
2
')
E
20.10; o2
z tab
lw 0O
0.05 1
0.00 — S — -
0.0 0.2 0.4 0.6 0.8 1.0
Nondimensional Coordinate Z

Fig. 3. Distribution of the stress o, for a constant value of C(¢) for the problem where displacement
is specified.

SAS 29:7-1
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0.40
0.35 4
< 0.30 1

« 0.25

©
]
o}

b
-
w

Nondimensional Stress

(=]
-
(=]

0.05 4

0.06 r
0.0 0.2 0.4 0.6 0.8

Nondimensional Coordinate Z

Fig. 4. Distribution of the stress 4, for a constant value of (U for the problem where displacement
1s specified.

corresponds to prescribing a time dependent (1, 1) for x(1). 3(1)] at the top plance of the
viscoclastic slab as shown in Fig. 5.

Generally, C(¢) is a function of ras itappears in the governing equation (24). Motivated
by the exponential decaying characteristic of the stresses with time, we assume that

C(t) = K|+[\’1[l.()——cxp(~ ;)]. (47)
K

1.40
Cit) = 0.00
1.30
<
g 1.20 C(t) = 0.50
g C(t)= 0.57
»
1.10 4
1.00 g
0.0 1.5 3.0 4.5 8.0
Time t

Fig. 5. Variation of the stretch ratio 2°(1, #) with time.
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Fig. 6. Variation of the motion and strains when displacement is specified.

where K, and K, arc constants. When=K, = 0.57 and K, = 0.30, the stretch ratio (2, 1)
and corresponding stresses 6.,(0,0, Z, 1) and 6,,(0,0, Z, ¢) relax symmetrically at all times
as shown in Figs 6-8. It is also scen from these figures that there is very little deformation
with time (sce Fig. 6). which corresponds to the case where a constant 2°(0,0) = A°(1,0)
(notc x = X/\/i.’) is assigned both at the bottom and top of the viscoclastic slab, respec-
tively, and 6,,(0,0,0,7) = 6,,(0,0, 1. 1) (d,, = 4,, from the original cquations) for all time
(sec Figs 7 and 8).
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Fig. 7. Symmetric distribution of the stress a,, at various times, when C(¢) is non-constant.



924 F. Dal et al.

0.40

0.35 -

o
8

A

0.25 -

A

Nondimensional Stress 0,,(0,0,2,1)

0.20-

0.15 1

0.101

0.05 1wt =2

0.00 v "
0.0 0.2 04 0.6 .0.8 1.0

Nondimensional Coordinate Z

Fig. 8 Symmetric distribution of the stress ¢, at various times, when C{f) ts non-constant.

Having a clear idea about the relationship between (1, 1) and C{f), we now turn our
attention to the non-uniform extension problem. Let us consider the case C(1) = 0.51 > 0,
which corresponds to a time dependent deformation of the upper surface with '(1,0) =
1.12 as shown in Fig. 5. The numerical solutions for the case where A(1,1) = 1.2,
1 2 0, are represented in Figs 9-11. The distributions of the kinematical quantities dx/d.X
(= dy/0Y = l.O/\/}.—'). 4 and £ are shown in Fig. 9 for r = 0 and ¢ — . From the figure,

1.4

@
w

o
»
R

Motion , Strains

0.2 1

0.0 v
0.0 0.2 04 0.6 0.8 1.0

Nondimensional Coordinate %
Fig. 9. Variation of the motion and strains when C(1) = 0.5.
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Fig. 10. Variation of the stress &, with time when C(0) = 0.5,

it is clear that dx/0.X and 4’ arc non-uniform and 4 varies only slightly from its initial values
but the variations in dx/d X and 4’ are relatively large, and are time dependent. The relaxation
of the stresses ¢..(0,0, Z, t) and 6..(0,0, Z, 1) (=6,,(0,0, Z, 1)) are evident from Figs 10 and
I1. The stress ¢..(0, 0, Z, 1) of the lower boundary is smaller than that on the upper boundary,
as 4°(0, 1) is smaller than A°(1, r). The same reason results in 6,..(0, 0,0, 1) being larger than
d.(0,0,1,1).

0.40
0.35 1

g 0.301

(0.0

A

[
o
N
[3]]

0.20 1

g
-
wn

Nondimensional Stress

o
-
o

0.05 -

a0

0.00 T - . "
00 02 04 06 08 10

Nondimensional Coordinate Z

Fig. 1. Variation of the stress d,, with time when C(¢) = 0.5.
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Fig. 12. Particle paths for the problem in which displacement is specified.

Figures 12 and 13 show the paths of particles originally at X' =1 and Y = 0 for the
problems in which the displacement and traction are prescribed, respectively. In Figs 12
and 13, the response at ¢ =0 is the instantancous clastic response. Also shown is the
asymptotic viscoelastic response as 1 — . Thus, at any intermediate time the viscoelastic
response is between the two limits shown in the figures.
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Fig. 13. Particle paths for the problem in which traction is prescribed.
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Fig. 14. Displacement histories for the problem in which traction is prescribed.

The response of the slab under a constant normal stress ¢..(0,0,1,¢0) = dy = 0.2 are
shown in Figs 14-16. The dcformation history of the slab for the problem is shown in Fig.
14. The displacement of the upper surface of the slab increases rapidly until £ = 4.0 and
then slowly reaches a ceiling value as time increases. The displacement of the planes near
the lower boundary, say Z = 0.2, however, increases slowly with time. The distributions of
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Fig. 15. Variation of the stress 4., with time when traction is prescribed.
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Fig. 16. Variation of the stress ¢,, with time when traction is prescribed.

stresses 6..(0.0, Z. 1) and d..(0,0, Z.0 through the slab are shown in Figs 15 and 16,
respectively. The stress 6,,(0,0, 1,¢) [= 6,,(0,0, 1, £)] changes with time. The distributions
of the stresses 6,,(0,0, 2, 1) and 6,,(0,0,Z, 1) through the slab for the problems where
displacement and traction are prescribed for the case where C(#) = 0.0 (which corresponds
to a time dependent A°(1, ¢) with °(1,0) = 1.315 as shown in Fig. 5) are shown in Figs 17--
20. The stresses vary through the slab approximately linearly for both problems for the
specific case under consideration.
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Fig. 17. Variation of the stress 6., with time for C(1) = 0. when displacement is prescribed.
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Fig. 18. Varation of the stress ¢, with time for C(¢) = 0, when displacement is prescribed.

0.200

0.175 4

-

-~
g 0.150 |

=4
N
(34
n

2 0.100 -

0.075 4

Nondimensional Stress 0,,

0.050

0.025 —r- r v T
0.0 0.2 0.4 0.6 0.8 1.0

Nondimensional Coordinate 2

Fig. 19. Variation of the stress d,, with time for C(¢) = 0. when traction is prescribed.
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